Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Curr Protoc ; 4(3): e1016, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38511507

RESUMO

Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.


Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
2.
Sci Rep ; 13(1): 15610, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730806

RESUMO

The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.


Assuntos
Ácido N-Acetilneuramínico , Salmonidae , Animais , Feminino , Humanos , Células HEK293 , Bioensaio
3.
Chembiochem ; 24(10): e202300075, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37052504

RESUMO

Chemical biology is a steadily growing field that has traditionally struggled to clearly define its boundaries in a short sentence. However, it can be stated that through the development of chemical and physicochemical tools, concepts and methods, chemical biology aims to address or stimulate biological questions at the molecular level in living organisms. Chemical biologists design and develop molecular tools that can probe or modulate biological processes, in order to understand their function, and sometimes to modify it for specific applications, but also to observe and analyze these tools in complex biological environments. Essentially positioned as a fundamental approach, chemical biology often remains very close to potential applications as it builds molecular objects capable of reacting to a significant biological stimulus. Chemical biology therefore finds natural development in fields such as health for the design of drugs and diagnostic systems or the environment for applications in crop science and ecology.


Assuntos
Biologia , França
4.
RSC Chem Biol ; 4(2): 173-183, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794016

RESUMO

Most Escherichia coli strains associated with neonatal meningitis express the K1 capsule, a sialic acid polysaccharide that is directly related to their pathogenicity. Metabolic oligosaccharide engineering (MOE) has mostly been developed in eukaryotes, but has also been successfully applied to the study of several oligosaccharides or polysaccharides constitutive of the bacterial cell wall. However, bacterial capsules are seldom targeted despite their important role as virulence factors, and the K1 polysialic acid (PSA) antigen that shields bacteria from the immune system still remains untackled. Herein, we report a fluorescence microplate assay that allows the fast and facile detection of K1 capsules with an approach that combines MOE and bioorthogonal chemistry. We exploit the incorporation of synthetic analogues of N-acetylmannosamine or N-acetylneuraminic acid, metabolic precursors of PSA, and copper-catalysed azide-alkyne cycloaddition (CuAAC) as the click chemistry reaction to specifically label the modified K1 antigen with a fluorophore. The method was optimized, validated by capsule purification and fluorescence microscopy, and applied to the detection of whole encapsulated bacteria in a miniaturized assay. We observe that analogues of ManNAc are readily incorporated into the capsule while those of Neu5Ac are less efficiently metabolized, which provides useful information regarding the capsule biosynthetic pathways and the promiscuity of the enzymes involved. Moreover, this microplate assay is transferable to screening approaches and may provide a platform to identify novel capsule-targeted antibiotics that would circumvent resistance issues.

5.
Methods Mol Biol ; 2566: 261-268, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36152258

RESUMO

In some specific vascular plant tissues, lignin can impregnate the entire cell wall to make it more rigid and hydrophobic. Different techniques have been developed in the past years to make possible the quantification of this polyphenolic polymer at the organ or tissue level, but difficulties of access to the cellular level remain. Here we describe an approach based on ratiometric emission measurements using safranin-O and the development of a macro adapted for the FIJI software, which makes it possible to quantify lignin in three different layers of the cell wall on images captured on a fluorescent confocal microscope.


Assuntos
Lignina , Fenazinas , Parede Celular/química , Corantes/análise , Lignina/química , Fenazinas/análise , Coloração e Rotulagem
6.
Sci Rep ; 12(1): 22129, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550357

RESUMO

Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.


Assuntos
Alcinos , Azidas , Humanos , Azidas/química , Alcinos/química , Células HEK293 , Hexosaminas , Ácido N-Acetilneuramínico/metabolismo , Química Click/métodos
7.
Eur J Med Chem ; 243: 114735, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122550

RESUMO

A series of ferrocenyl-containing γ-hydroxy-γ-lactam tetramates were prepared in 2-3 steps through ring opening-ring closure (RORC) process of γ-ylidene-tetronate derivatives in the presence of ferrocenyl alkylamines. The compounds were screened in vitro for their antiplasmodial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (W2) clones of P. falciparum, displaying activity in the range of 0.12-100 µM, with generally good resistance index. The most active ferrocene in these series exhibited IC50 equal to 0.09 µM (3D7) and 0.12 µM (W2). The low cytotoxicity of the ferrocenyl-containing γ-hydroxy-γ-lactam tetramates against Human Umbilical Vein Endothelial (HUVEC) cell line demonstrated selective antiparasitic activity. The redox properties of these ferrocene-derived tetramates were studied and physico-biochemical studies evidenced that these derivatives can exert potent antimalarial activities via a mechanism distinct from ferroquine.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Metalocenos/farmacologia , Antimaláricos/química , Plasmodium falciparum , Lactamas/farmacologia , Lactamas/química , Relação Estrutura-Atividade , Malária Falciparum/tratamento farmacológico , Cloroquina/uso terapêutico
8.
Biochem Biophys Res Commun ; 617(Pt 1): 16-21, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35667241

RESUMO

The CMP-sialic acid synthetase (CSS) activates free sialic acid (Sia) to CMP-Sia using CTP, and is prerequisite for the sialylation of cell surface glycoconjugates. The vertebrate CSS consists of two domains, a catalytic N-domain and a non-catalytic C-domain. Although the C-domain is not required for the CSS enzyme to synthesize CMP-Sia, its involvement in the catalytic activity remains unknown. First, the real-time monitoring of CSS-catalyzed reaction was performed by 31P NMR using the rainbow trout CSS (rtCSS). While a rtCSS lacking the C-domain (rtCSS-N) similarly activated both deaminoneuraminic acid (Kdn) and N-acetylneuraminic acid (Neu5Ac), the full-length rtCSS (rtCSS-FL) did not activate Kdn as efficiently as Neu5Ac. These results suggest that the C-domain of rtCSS affects the enzymatic activity, when Kdn was used as a substrate. Second, the enzymatic activity of rtCSS-FL and rtCSS-N was measured under various concentrations of CMP-Kdn. Inhibition by CMP-Kdn was observed only for rtCSS-FL, but not for rtCSS-N, suggesting that the inhibition was C-domain-dependent. Third, the inhibitory effect of CMP-Kdn was also investigated using the mouse CSS (mCSS). However, no inhibition was observed with mCSS even at high concentrations of CMP-Kdn. Taken together, the data demonstrated that the C-domain is involved in the CMP-Kdn-dependent inhibition of rtCSS, which is a novel regulation of the Sia metabolism in rainbow trout.


Assuntos
N-Acilneuraminato Citidililtransferase , Oncorhynchus mykiss , Animais , Monofosfato de Citidina/análogos & derivados , Camundongos , Ácido N-Acetilneuramínico/metabolismo , N-Acilneuraminato Citidililtransferase/metabolismo , Ácidos Neuramínicos , Ácidos Siálicos/metabolismo
9.
Plant Physiol ; 188(2): 816-830, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34687294

RESUMO

This article describes a methodology for detailed mapping of the lignification capacity of plant cell walls that we have called "REPRISAL" for REPorter Ratiometrics Integrating Segmentation for Analyzing Lignification. REPRISAL consists of the combination of three separate approaches. In the first approach, H*, G*, and S* monolignol chemical reporters, corresponding to p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol, are used to label the growing lignin polymer in a fluorescent triple labeling strategy based on the sequential use of three main bioorthogonal chemical reactions. In the second step, an automatic parametric and/or artificial intelligence segmentation algorithm is developed that assigns fluorescent image pixels to three distinct cell wall zones corresponding to cell corners, compound middle lamella and secondary cell walls. The last step corresponds to the exploitation of a ratiometric approach enabling statistical analyses of differences in monolignol reporter distribution (ratiometric method [RM] 1) and proportions (RM 2) within the different cell wall zones. We first describe the use of this methodology to map developmentally related changes in the lignification capacity of wild-type Arabidopsis (Arabidopsis thaliana) interfascicular fiber cells. We then apply REPRISAL to analyze the Arabidopsis peroxidase (PRX) mutant prx64 and provide further evidence for the implication of the AtPRX64 protein in floral stem lignification. In addition, we also demonstrate the general applicability of REPRISAL by using it to map lignification capacity in poplar (Populus tremula × Populus alba), flax (Linum usitatissimum), and maize (Zea mays). Finally, we show that the methodology can be used to map the incorporation of a fucose reporter into noncellulosic cell wall polymers.


Assuntos
Arabidopsis/fisiologia , Botânica/instrumentação , Lignina/fisiologia , Arabidopsis/genética , Botânica/métodos , Parede Celular/fisiologia , Lignina/genética , Células Vegetais/fisiologia
10.
Angew Chem Int Ed Engl ; 60(43): 23084-23105, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34097349

RESUMO

The surging development of bioorthogonal chemistry has profoundly transformed chemical biology over the last two decades. Involving chemical partners that specifically react together in highly complex biological fluids, this branch of chemistry now allows researchers to probe biomolecules in their natural habitat through metabolic labelling technologies. Chemical reporter strategies include metabolic glycan labelling, site-specific incorporation of unnatural amino acids in proteins, and post-synthetic labelling of nucleic acids. While a majority of literature reports mark cell-surface exposed targets, implementing bioorthogonal ligations in the interior of cells constitutes a more challenging task. Owing to limiting factors such as membrane permeability of reagents, fluorescence background due to hydrophobic interactions and off-target covalent binding, and suboptimal balance between reactivity and stability of the designed molecular reporters and probes, these strategies need mindful planning to achieve success. In this review, we discuss the hurdles encountered when targeting biomolecules localized in cell organelles and give an easily accessible summary of the strategies at hand for imaging intracellular targets.


Assuntos
Corantes Fluorescentes/química , Sondas Moleculares/química , Ácidos Nucleicos/química , Polissacarídeos/química , Proteínas/química , Alcinos/química , Animais , Azidas/química , Bactérias/química , Linhagem Celular Tumoral , Química Click , Reação de Cicloadição , Corantes Fluorescentes/síntese química , Humanos , Sondas Moleculares/síntese química
11.
Chem Commun (Camb) ; 57(3): 404, 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33393953

RESUMO

Correction for 'EPR imaging of sinapyl alcohol and its application to the study of plant cell wall lignification' by Clémence Simon et al., Chem. Commun., 2021, DOI: .

12.
Chem Commun (Camb) ; 57(3): 387-390, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33326527

RESUMO

In bioimaging, bioorthogonal chemistry is most often used to visualize chemical reporters by fluorescence in their native environment. Herein, we show that TEMPO-based probes can be ligated to monolignol reporters by Diels-Alder chemistry in plant cell walls, paving the way for the study of lignification by EPR spectroscopy and imaging.


Assuntos
Parede Celular/química , Óxidos N-Cíclicos/análise , Óxidos N-Cíclicos/química , Linho/química , Fenilpropionatos/análise , Espectroscopia de Ressonância de Spin Eletrônica , Linho/citologia , Estrutura Molecular
13.
Molecules ; 25(19)2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019562

RESUMO

Monitoring glycosylation changes within cells upon response to stimuli remains challenging because of the complexity of this large family of post-translational modifications (PTMs). We developed an original tool, enabling labeling and visualization of the cell cycle key-regulator ß-catenin in its O-GlcNAcylated form, based on intramolecular Förster resonance energy transfer (FRET) technology in cells. We opted for a bioorthogonal chemical reporter strategy based on the dual-labeling of ß-catenin with a green fluorescent protein (GFP) for protein sequence combined with a chemically-clicked imaging probe for PTM, resulting in a fast and easy to monitor qualitative FRET assay. We validated this technology by imaging the O-GlcNAcylation status of ß-catenin in HeLa cells. The changes in O-GlcNAcylation of ß-catenin were varied by perturbing global cellular O-GlcNAc levels with the inhibitors of O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Finally, we provided a flowchart demonstrating how this technology is transposable to any kind of glycosylation.


Assuntos
Acetilglucosamina/metabolismo , Engenharia Metabólica , Imagem Óptica , beta Catenina/metabolismo , Fluorescência , Transferência Ressonante de Energia de Fluorescência , Glicosilação , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
14.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847109

RESUMO

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis , Parede Celular/metabolismo , Glucosiltransferases/fisiologia , Lignina/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lignina/química , Mutação , Plantas Geneticamente Modificadas , Xilema/metabolismo
15.
J Med Chem ; 63(15): 8231-8249, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32608236

RESUMO

Sialin, encoded by the SLC17A5 gene, is a lysosomal sialic acid transporter defective in Salla disease, a rare inherited leukodystrophy. It also enables metabolic incorporation of exogenous sialic acids, leading to autoantibodies against N-glycolylneuraminic acid in humans. Here, we identified a novel class of human sialin ligands by virtual screening and structure-activity relationship studies. The ligand scaffold is characterized by an amino acid backbone with a free carboxylate, an N-linked aromatic or heteroaromatic substituent, and a hydrophobic side chain. The most potent compound, 45 (LSP12-3129), inhibited N-acetylneuraminic acid 1 (Neu5Ac) transport in a non-competitive manner with IC50 ≈ 2.5 µM, a value 400-fold lower than the KM for Neu5Ac. In vitro and molecular docking studies attributed the non-competitive character to selective inhibitor binding to the Neu5Ac site in a cytosol-facing conformation. Moreover, compound 45 rescued the trafficking defect of the pathogenic mutant (R39C) causing Salla disease. This new class of cell-permeant inhibitors provides tools to investigate the physiological roles of sialin and help develop pharmacological chaperones for Salla disease.


Assuntos
Aminoácidos/química , Aminoácidos/metabolismo , Lisossomos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Simportadores/metabolismo , Animais , Relação Dose-Resposta a Droga , Células HEK293 , Células HeLa , Humanos , Ligantes , Simulação de Acoplamento Molecular/métodos , Estrutura Secundária de Proteína , Ratos
16.
Chembiochem ; 21(18): 2643-2658, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32307798

RESUMO

The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a, identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , DNA Fúngico/efeitos dos fármacos , Hemeproteínas/antagonistas & inibidores , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cresóis/química , Cresóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Compostos Ferrosos/farmacologia , Hemeproteínas/metabolismo , Humanos , Metalocenos/química , Metalocenos/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química
17.
ChemistryOpen ; 9(3): 351-365, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32211280

RESUMO

Non-tuberculous mycobacterium (NTM) infections, such as those caused by Mycobacterium abscessus, are increasing globally. Due to their intrinsic drug resistance, M. abscessus pulmonary infections are often difficult to cure using standard chemotherapy. We previously demonstrated that a piperidinol derivative, named PIPD1, is an efficient molecule both against M. abscessus and Mycobacterium tuberculosis, the agent of tuberculosis, by targeting the mycolic acid transporter MmpL3. These results prompted us to design and synthesize a series of piperidinol derivatives and to determine the biological activity against M. abscessus. Structure-activity relationship (SAR) studies pointed toward specific sites on the scaffold that can tolerate slight modifications. Overall, these results identified FMD-88 as a new promising active analogue against M. abscessus. Also, we determined the pharmacokinetics properties of PIPD1 and showed that intraperitoneal administration of this compound resulted in promising serum concentration and an elimination half-life of 3.2 hours.


Assuntos
Antituberculosos/química , Mycobacterium abscessus/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Antituberculosos/farmacocinética , Transporte Biológico , Humanos , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ácidos Micólicos/metabolismo , Relação Estrutura-Atividade
18.
J Biol Chem ; 294(46): 17512-17523, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31562241

RESUMO

Mycobacterium tuberculosis, the causative agent of tuberculosis, remains a major human pathogen, and current treatment options to combat this disease are under threat because of the emergence of multidrug-resistant and extensively drug-resistant tuberculosis. High-throughput whole-cell screening of an extensive compound library has recently identified a piperidinol-containing molecule, PIPD1, as a potent lead compound against M. tuberculosis Herein, we show that PIPD1 and related analogs exert in vitro bactericidal activity against the M. tuberculosis strain mc26230 and also against a panel of multidrug-resistant and extensively drug-resistant clinical isolates of M. tuberculosis, suggesting that PIPD1's mode of action differs from those of most first- and second-line anti-tubercular drugs. Selection and DNA sequencing of PIPD1-resistant mycobacterial mutants revealed the presence of single-nucleotide polymorphisms in mmpL3, encoding an inner membrane-associated mycolic acid flippase in M. tuberculosis Results from functional assays with spheroplasts derived from a M. smegmatis strain lacking the endogenous mmpL3 gene but harboring the M. tuberculosis mmpL3 homolog indicated that PIPD1 inhibits the MmpL3-driven translocation of trehalose monomycolate across the inner membrane without altering the proton motive force. Using a predictive structural model of MmpL3 from M. tuberculosis, docking studies revealed a PIPD1-binding cavity recently found to accommodate different inhibitors in M. smegmatis MmpL3. In conclusion, our findings have uncovered bactericidal activity of a new chemical scaffold. Its anti-tubercular activity is mediated by direct inhibition of the flippase activity of MmpL3 rather than by inhibition of the inner membrane proton motive force, significantly advancing our understanding of MmpL3-targeted inhibition in mycobacteria.


Assuntos
Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Ácidos Micólicos/metabolismo , Piperidinas/farmacologia , Antituberculosos/química , Proteínas de Bactérias/metabolismo , Transporte Biológico/efeitos dos fármacos , Fatores Corda/metabolismo , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mycobacterium tuberculosis/metabolismo , Piperidinas/química , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
19.
Proteomics ; 19(21-22): e1800452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31373757

RESUMO

Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.


Assuntos
Caderinas/genética , Neoplasias Colorretais/genética , N-Acetilglucosaminiltransferases/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Glicosilação , Células HCT116 , Células HT29 , Humanos , Polissacarídeos/genética
20.
Int J Mol Sci ; 20(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30709055

RESUMO

The mammalian mono-α2,8-sialyltransferase ST8Sia VI has been shown to catalyze the transfer of a unique sialic acid residues onto core 1 O-glycans leading to the formation of di-sialylated O-glycosylproteins and to a lesser extent to diSia motifs onto glycolipids like GD1a. Previous studies also reported the identification of an orthologue of the ST8SIA6 gene in the zebrafish genome. Trying to get insights into the biosynthesis and function of the oligo-sialylated glycoproteins during zebrafish development, we cloned and studied this fish α2,8-sialyltransferase homologue. In situ hybridization experiments demonstrate that expression of this gene is always detectable during zebrafish development both in the central nervous system and in non-neuronal tissues. Intriguingly, using biochemical approaches and the newly developed in vitro MicroPlate Sialyltransferase Assay (MPSA), we found that the zebrafish recombinant enzyme does not synthetize diSia motifs on glycoproteins or glycolipids as the human homologue does. Using comparative genomics and molecular phylogeny approaches, we show in this work that the human ST8Sia VI orthologue has disappeared in the ray-finned fish and that the homologue described in fish correspond to a new subfamily of α2,8-sialyltransferase named ST8Sia VIII that was not maintained in Chondrichtyes and Sarcopterygii.


Assuntos
Sialiltransferases/genética , Sialiltransferases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Animais , Células COS , Sistema Nervoso Central/metabolismo , Chlorocebus aethiops , Simulação por Computador , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Glicolipídeos/química , Glicoproteínas/química , Células HEK293 , Humanos , Filogenia , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Distribuição Tecidual , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...